Requesty router now supports image generation models that return generated images alongside text responses through the standard chat completions endpoint.

How It Works

Image generation models use the same /v1/chat/completions endpoint as text models, but return an additional images array in the response containing the generated images.

Request Format

Send requests using the standard chat completions format:
curl https://router.requesty.ai/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR_REQUESTY_API_KEY" \
  -d '{
    "model": "vertex/google/gemini-2.5-flash-image-preview",
    "messages": [
      {
        "role": "user",
        "content": "Generate an image of a sunset over mountains"
      }
    ]
  }'

Response Format

The response includes both the standard text content and an array of generated images:
{
  "model": "vertex/google/gemini-2.5-flash-image-preview",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "I've generated an image of a sunset over mountains as requested.",
        "images": [
          {
            "type": "image_url",
            "image_url": {
              "url": "_base64_image"
            }
          }
        ]
      }
    }
  ]
}

Working with Generated Images

Python Example

import base64
from io import BytesIO
from PIL import Image
from openai import OpenAI

requesty_api_key = "YOUR_REQUESTY_API_KEY"

client = OpenAI(
    api_key=requesty_api_key,
    base_url="https://router.requesty.ai/v1",
)

response = client.chat.completions.create(
    model="vertex/google/gemini-2.5-flash-image-preview",
    messages=[
        {
            "role": "user",
            "content": "Generate a futuristic cityscape at night"
        }
    ]
)

# Extract the generated image
message = response.choices[0].message
if hasattr(message, 'images') and message.images:
    for i, image_data in enumerate(message.images):
        # Extract base64 data from data URL
        # Format: "_base64_data"
        base64_str = image_data['image_url']['url'].split(',')[1]
        image_bytes = base64.b64decode(base64_str)
        
        # Open with PIL
        image = Image.open(BytesIO(image_bytes))
        
        # Save the image
        image.save(f'generated_image_{i}.png')
        print(f"Image saved as generated_image_{i}.png")

# Access the text response
print(message.content)

JavaScript/TypeScript Example

import OpenAI from 'openai';
import fs from 'fs';

const client = new OpenAI({
  apiKey: 'YOUR_REQUESTY_API_KEY',
  baseURL: 'https://router.requesty.ai/v1',
});

async function generateImage() {
  const response = await client.chat.completions.create({
    model: 'vertex/google/gemini-2.5-flash-image-preview',
    messages: [
      {
        role: 'user',
        content: 'Generate a serene landscape with a lake'
      }
    ]
  });

  const message = response.choices[0].message;
  
  // Handle generated images
  if (message.images && message.images.length > 0) {
    message.images.forEach((imageData, index) => {
      // Extract base64 data from data URL
      // Format: "_base64_data"
      const base64Data = imageData.image_url.url.split(',')[1];
      const imageBuffer = Buffer.from(base64Data, 'base64');
      
      // Save to file
      fs.writeFileSync(`generated_image_${index}.png`, imageBuffer);
      console.log(`Image saved as generated_image_${index}.png`);
    });
  }

  // Access the text response
  console.log(message.content);
}

generateImage();

Supported Models

Currently, Requesty supports the following image generation model:
  • Vertex AI Gemini: vertex/google/gemini-2.5-flash-image-preview
This model provides fast, high-quality image generation through Google’s Vertex AI platform.
Image generation models may have different pricing compared to text models. Check the model details for specific pricing information.

Limitations

  • Generated images are returned as base64-encoded data
  • Image size and resolution depend on the specific model capabilities
  • Some models may have content filtering or safety restrictions
  • Response size limits apply to the combined text and image data